

Guidelines for Soil and Vegetation Analysis And Visibility Analysis

December 2015

1. Introduction

1.1 Scope

This document explains the requirements for performing a soil and vegetation analysis and a visibility analysis for the Santa Barbara County Air Pollution Control District (District). It is assumed that the reader has some modeling experience with AERMOD, AERSCREEN and VISCREEN. This document is not intended as a user's guide for AERMOD, AERSCREEN or VISCREEN. User's guides for these models are noted in the reference section of this document and should be consulted for troubleshooting or when background information is needed on a topic. The purpose of this document is to clarify the requirements for the soil and vegetation analysis and a visibility analysis. The District's guidance for the air dispersion models is a separate document and available here: http://www.ourair.org/wp-content/uploads/aqia.pdf

1.2 Applicability

Per District's Rule 803, Prevention of Significant Deterioration, any new or modified stationary source which emits, in its entirety, more than any emission level shown in Table 2 of any attainment pollutant must complete a soil and vegetation analysis and a visibility analysis. The entire project's emissions must be included in the analyses. Project is defined to include all Authority to Constructs issued within the last three years and other related project emissions.

	tion Monitoring Threshold
Pollutant	Pounds/day
Particulate Matter	120
PM ₁₀	80
All other attainment pollutants	240

2. Soil and Vegetation Analysis

2.1 EPA's Seven-Step Screen

A screening analysis for soil and vegetation impacts should be conducted by using EPA's *Screening Procedure for the Impacts of Air Pollution Sources on Plants, Soils, and Animals* (EPA's Screening Procedure). The document is available on the District's website: <u>http://www.ourair.org/wp-content/uploads/EPA-Soil-Plant-Screen.pdf</u>. Before using EPA's seven step screening methodology, you must first determine your project's criteria and toxics emissions. The toxic emissions may be calculated using source test results or District-approved emission factors.

If you completed air dispersion modeling for some other aspect of your project (e.g., Air Quality Impact Analysis), then you will combine the modeled ground level concentrations with the ambient background concentrations and compare the results with the most stringent limits for each Class I and Class II area. Background concentrations can be obtained from the District for NOx, CO and SO₂ for certain areas in Santa Barbara County. Background concentrations for lead are found in Appendix C of EPA's Screening Procedure for Santa Barbara County.

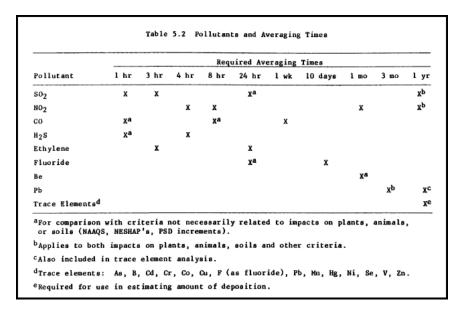
Step 1 Evaluating Maximum Concentrations

If the ground level concentration (GLC) is already known for these pollutant (i.e., air dispersion modeling was required for some other aspect of the project), then continue to Step 2. If the GLCs have not yet been determined, then use EPA's Significant Emission Rate (SER) methodology by comparing the project's potential emissions against the SER thresholds in Tables 5.6 and 5.7 of EPA's Screening Procedure (tables are reproduced below). If your project emissions (in tons/year) for all pollutants are less than the SER thresholds in Tables 5.6 and 5.7, no further action is required for the soil and vegetation impacts analysis.

Significant Emission Rate Methodology

EPA defines the SER as the minimum emission rate which would cause the source's impact to just equal the screening concentration. Your project's emissions are compared to the SER thresholds in Table 5.6 and 5.7. The SER thresholds are based on generic stack parameters and may be adjusted to reflect different stack parameters. EPA's Screening Procedure Table 5.8 provides different stack configurations with the corresponding adjustment factor, called the Emission Rate Increase Factor. In addition, it may be necessary to adjust for a different project lifetime. EPA's Table 5.7 is based on a project lifetime of 10 years. To adjust for a different project lifetime, use EPA's Screening Procedure Equation 5.9 (shown below).

An example using the SER method is available at: <u>http://www.ourair.org/wp-content/uploads/Example-SER-Method.xlsx</u>


	Significant Emission Rate (T/yr)																
						Pollutant and Averaging Time ^b											
Screening	SO2NO2					00		H28	Ethy	lene	Fluoride	Beryllium	Lead				
Criterion	1	3	24	A	4	8	M	٨	1	8	W	4	3	24	240	M	31
AQRV Screening Concentration	160	170	-	171	840	950	3,200	950	-	-	760,000	6,400	10.0	0.36	0.23	0.057	.11
NAAQS	-	290	110	760	-	-	-	950	7,000	2,500	-	-	-	-	-	-	11
PSD Increment I	-	5.3	1.5	19	-	-	-	-	-	-	-	-	-	-	-	-	-
11	-	110	28	190	-	-	-	-	-	-	-	-	-	-	-	-	-
111	-	150	55	380	-	-	-	-	-	-	-	-	~	-	-	-	-
Variance	-	69	28	190	-	-	-	-	-	-	-	-	-	-	-	-	-
NESHAP	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.057	-
^a Based on 30 m re	lease	he ich t	and	no ha	ckerow	ha											

		Stack Parameter		
Stack	Height (m)	Temperature (°K)	Flow (m ³ /sec)	Emission Rate Increase Factor
30 m release	30	293	0	1.00
10 m cold	10	350	4	0.96
10 m hot	10	550	4	4.07
30 m cold	30	350	4	3.43
30 m hot	30	550	4	8.93

(Significant emission rate for N year lifetime	Tabulated significant emission rate x (10/N).	(5.9)
--	---	-------

		Significant Emission Rate (T/yr) Criterion								
Trace Element	Soils	Plant Tissue	Animals	10% of Endogenous Soi Concentration ^b						
Arsenic	.40	. 24	2.8	.08						
Boron	.067	. 28	-	.13						
Cadmium	. 33	.037	.19	.00080						
Chromium	1.1	6.7	-	1.3						
Cobalt	-	23 c	1.2	.11						
Copper	5.3	.21	5.7	. 27						
Fluoride	53c	1400 ^c	440 ^c	2.7						
Lead	130d	37d	24d	.13						
Manganese	. 33	810 ^c	1000 ^c	11¢						
Mercury	61c	-	-	-						
Nickel	67°	170 ^c	3000°	. 53						
Selenium	1.7	13c	.67	.0067						
Vanadium	.33	-	130 ^c	1.3						
Zinc	-	63c	100c	.67						
source lif divide the	fetime of tabulato a suppor	10 years. ed values b	For a life y (N/10). ator only;	round, and a stime of N years, based on a 10% e 3.5.						
				or TSP of 10						

December 2015 Santa Barbara County APCD If any of the SER thresholds are exceeded, estimate the maximum ambient concentration for the appropriate averaging times. This may be done in AERSCREEN or AERMOD. You must include background concentrations (if available). Table 5.2 of EPA's Screening Procedure (shown below) gives the correspondence between pollutants and the averaging times to be considered.

Step 2 Screening for Direct Impacts

Compare the maximum concentration determined in Step 1 against the corresponding screening concentrations in EPA's Screening Procedure Table 3.1 (reproduced below) or against the corresponding NAAQS, NESHAP or PSD increments (shown in EPA's Screening Procedure Table 5.3), whichever applicable standard is most restrictive. In addition, check for synergistic impacts by comparing the GLCs to Table 3.3 in EPA's Screening Procedure. If your project concentrations (plus background) are less than the most restrictive standard, then **no further action is required for the soil and vegetation impacts analysis.** If any pollutants exceed the most restrictive standard or if there is no standard for the trace element of interest (e.g., arsenic), go to Step 3.

		Minis	um Reported Level	(ppmav) ^c	
			getation Sensitiv		
	Averaging Time	Sensitived	Intermediate	Resistant	Reference
so ₂	l hr 3 hrs 1 yr	.35(917) .30(786)	.80(2096) 007(18)	5.0(13100)	14 16 17
03 ^e	l hr 4 hrs 8 hrs	.20(392) .10(196) .06(118)	.35(686) .15(294) .15(294)	.55(1078) .35(686) .30(588)	18 18 18
NO ₂	4 hrs 8 hrs 1 mo 1 yr		5.0(9400) 4.0(7520) —.30(564) 0510(94-188)	9.0(16920) 8.0(15040)	19 19 f 20
COS	l vk	1000 (1,800,000)	-	10,000 (18,000,000)	20
H ₂ S	4 hrs	20.0-60.0 (28,000-84,000)	-	400 (560,000)	22
Ethylene ^h	3-4 hrs 24 hrs		04(47) 001(1.2)		24 25
Fluorine	10 days	······································	(0.5-10)		26
Berylliumi	1 mo		(0.01)		27
Leadj	3 110		-(1.5)		28

Pollutants	Concentrations (ppmv)	Exposure	Reference
SO ₂ NO ₂	.05	l hr	30
so ₂ b 0 ₃	.30 .10	l hr	31
so2 ^b 03	.05 .05	4 hr	32
s0 ₂ 0 ₃ NO ₂	.14 .05 .10	6 hr/day for 28 days	33

	Ambient Concentration (µg/m ³)																
								1	Pollut	ant and A	veraging Tis	1e ⁴					
Screening	802 NO2					· co		H28	Et h	ylene	Fluoride	Beryllium	Lead				
Criterion	1	3	24	A	4	8	N		1	8	W	4	3	24	240	H	314
AQRV																	
Screening Concentration ^b	917	786	-	18	3,760 ^b	3760 ^b	564	(100)	-	-	1,800,000	28.000Þ	47	(1.2)	0.5	.01	1.5
								$\overline{}$		\bigcirc	-,,	,		9			
NAAQS ^c ,d	-	1,300	365	80	-	-	-	$\underline{00}$	40,000	0 (10,000)	-	-	-	-	-	-	(1.5)
PSD Increment			\sim														
Ie,f IIe,f	-	25 512			-	-	-	-	-	-	-	~	-	-	-	-	-
111e,f	-	700	182		-	-	-	-	-	-	-	-	-	-	-	-	-
Variance ^e ,8	-	325		20	-	-	-	-	-	-	-	-	-	-	-	-	-
NESHAPE,h	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.01	-
Note: Gircled va	lues e	xpecte	d to	be c	ontrolli	ng; see	text										
⁸ Numerals: hours W: 1 week M: 1 month A: Annual																	
Ambient concentr	at iona	this	high	are	unlikely												
^c 40 CFR 50.																	
dBased on maximum	impac	tof	ource	p lu	a backgr	ound.											
eRef. l.																	
fBased on maximum	impac	t of e	ource	: alo	ne.												

Step 3 Calculating Deposited Soil Concentrations

Use EPA's Screening Procedure Equation 5.1 (shown below) to estimate the maximum concentration in the soil:

```
DC(ppmw) = 21.5 (N/d)X (5.1)
where:
DC = deposited concentration [ppmw],
N = expected lifetime of source (yr),
d = depth of soil through which deposited material
is distributed (cm), and
X = maximum annual average ambient concentration from
the source (µg/m<sup>3</sup>).
```

Per EPA's guidance, d = 3 cm. N is set to the same value used for the SER method in Step 1.

Step 4 Calculate Increase over Endogenous Soil Concentration

An increase over the endogenous concentration of more than 10% over the lifetime of the source could be taken as a possible cause for concern. The percentage increase is calculated from EPA's Screening Procedure Equation 5.4 (shown below):

```
(% Increase) = [DC(ppmw) x 100)]/[Endogenous
Concentration (ppmw)] (5.4)
```

Obtain the endogenous concentrations from EPA's Screening Procedure Table 3.5 (shown below).

Page 6 Soil and Vegetation Analysis and Visibility Analysis Guidelines December 2015 Santa Barbara County APCD

ange ppmw) -40 -100 1-7.0 -3000 -40 -100	(pp 6 6 10	tration mw) .0 .0 .0 .0 .06
-40 -100 1-7.0 -3000 -40	6 10 0 100	.0 .0 .06
-100 1-7.0 -3000 -40	10 0 100	.0
1-7.0 -3000 -40	0	. 06
-3000 -40	100	
-40		
	8	
-100		
	20	
0-300	200	
-100	10	
00-400	0 850	
1-4.0(?) .	-
0-1000	40	
1-80	0	. 5
0-500	100	
0-300	50	
	0-1000 1-80 0-500 0-300	1-80 0 0-500 100

Step 5 Calculate Potential Concentrations in Plant Tissue

Estimate the plant tissue concentration using EPA's Screening Procedure Equation 5.5 (shown below):

```
[Tissue concentration (ppmw)] =
[Deposited concentration (ppmw)] x [Concentration ratio]
TC (ppmw) = DC (ppmw) x CR (5.5)
```

The soil concentration ratios, CR, may be obtained from EPA's Screening Procedure Table 3.6 (shown below):

or

Table 3.6.	Plant: Soil Ratios	Concentration
Element	Recommended Value ^a	Comparative Value ^b
Arsenic	0.14	4.2
Boron	5.3	-
Cadmium	10.7	222
Chromium	0.02	250
Cobalt	0.11	87
Соррет	0.47	1000
Fluoride	0.03	-
Lead	0.45	2
Manganese	0.066	3000
Mercury	0.02-0.5	26
Nickel	0.045	331
Selenium	1.0	4
Vanadium	0.01	1
Zinc	0.64	40
^a Based on 1	Ref. 8.	
standard n	Ref. 12. Base methods involv See discussi	ing solution

Step 6 Screen for Potential Adverse Impacts from Trace Elements

In this step, three comparisons are made:

- 1. The deposited concentration (DC) is compared to the soil screening concentration in EPA's Screening Procedure Table 3.4 (shown below);
- 2. The tissue concentration (TC) is compared to the tissue screening concentration in Table 3.4; and
- 3. The tissue concentration (TC) is compared to the dietary screening concentration for animals in EPA's Screening Procedure Table 3.7.

A calculated concentration in excess of any one of the three screening concentrations is an indication that a more detailed evaluation may be required and/or that the Federal Land Managers will be notified, since there are indication(s) of potential adverse impacts to plant, soils, or animals. If none of the screening concentrations of Table 3.4 are exceeded, no further action is required for the soil and vegetation impacts analysis.

Minimum Reported Level (ppmw)							
•	Polluta	nt Source					
Pollutant	Soil	Tissue	Reference				
Arsenic	3	0.25	9				
Boron	0.5	11	9				
Cadmium	2.5	3	9				
Chromium	8.4	1	9,35				
Cobalt ^a	-	19	9				
Copper	40	0.73	9				
Fluoridea	400	310	9				
Lead ^a	1000	126	9				
Manganese	2.5	400	9,36				
Mercury	455	-	9				
Nickel	500	60	9				
Seleniuma	13	100	9,37				
Vanadium	2.5	-	38				
Zinc	-	300	9				

Table 3 4 Screening Concentrations for

Step 7 Consider Effects of Solubilities

If a screen indicates that a further action is needed on a source because its emissions will cause a trace element screening concentration to be exceeded, an attempt may be made to look at the possible effect of reduced solubility on that indication by considering the solubility of the deposited material. This additional consideration can only be used as a supportive indicator; it can only increase confidence in the decision to take further action; it cannot reverse such a decision based on the screens in Step 6.

Calculate the tissue concentration corrected for the solubility of the pollutant, TC_{corr}, using EPA's Screening Procedure Equations 5.7 and 5.8 (shown below). Then compare TC_{corr} to the concentrations in EPA's Screening Procedure Table 3.4. Additional review may be required if it is known that solubility effects may be important, even if none of the screening concentrations of Table 3.4 are exceeded using TC_{corr}.

```
If the solubility of a particular trace element is S%, the amount
actually available for uptake (AA) by plants is
\begin{pmatrix} Amount \\ available \\ for uptake \end{pmatrix} = DC \times (S/100)
or
AA = DC \times (S/100). (5.7)
```

```
TC_{corr.} = AA \times CR = DC \times (S/100) \times CR = TC \times (S/100) (5.8)
where TC_{corr.} stands for the tissue concentration corrected for the solubility
```

of the deposited material. The new values of $TC_{corr.}$ could be compared with the screening concentrations for plant tissues and animals given in Tables 3.4 and 3.7, respectively.

3.0 Visibility Impact Analysis

A visibility impact analysis begins with a Level-1 plume visual impact screening analysis conducted for the nearest Class I area using the *United States Environmental Protection Agency (EPA) Workbook for Plume Visual Impact Screening and Analysis* Revised October 1992 (EPA Workbook) http://www.epa.gov/scram001/userg/screen/WB4PlumeVisualOCR.pdf and VISCREEN model version 13190 (available at: http://www.epa.gov/scram001/userg/screen/WB4PlumeVisualOCR.pdf and VISCREEN model version 13190 (available at: http://www.epa.gov/scram001/dispersion_screening.htm). A VISCREEN Level-1 analysis uses emission rates, distances, and background visual range data to predict whether a plume has the potential to be perceptible under reasonable worst case conditions.

3.1 Level-1 Screening

For most sources, only the total particulates and NOx emission rates are required to be evaluated. The District will notify you if must include primary NO₂, soot, and/or sulfate emissions in VISCREEN.

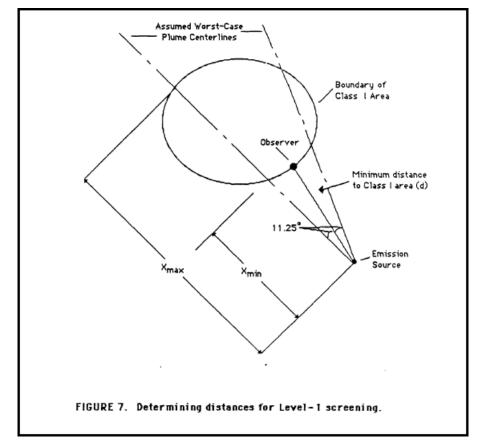
VISCREEN Inputs:

- Emission rates of (maximum short-term rates)
 - Particulate matter
 - Nitrogen oxides (NOx)
 - \circ Nitrogen dioxide (NO₂), primary sulfate (SO₄²⁻), soot If notified by District to include.
- Distance between the emission source and (1) the observer, (2) the closest Class I area boundary, and (3) the most distant Class I area boundary.
- Background visual range appropriate for the region in which the Class I area (San Rafael Wilderness) is located.

The following three distances must be determined for VISCREEN (See EPA Workbook Figure 7, shown below):

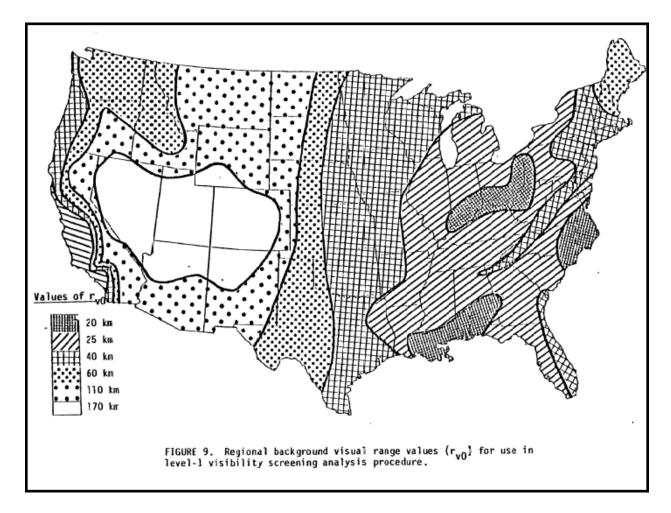
- Minimum distance between the emission source and observer (parameter d)
- Nearest Class I area boundary based on a 22.5° wide sector (parameter Xmin)
- Most distant Class I area boundary based on a 22.5° wide sector (parameter Xmax)

An example showing the three distances on an aerial photo is shown below.


VISCREEN requires the background visual range of the region in which the Class I area is located. Based on the EPA Workbook Figure 9 (shown below), use a default value of 25 kilometers for the background visual range.


A Level-1 plume visual impact screening analysis must be conducted for any parks (e.g. city, county, state, or federal) within 20 kilometers of the facility boundary using the same methodology as for the nearest Class I area. The Class II visibility analysis is for informational purposes as there is no established criterion for Class II areas.

Results from VISCREEN are compared to two separate screening criteria specified by the EPA for Class I areas to see if the plume might be perceptible under reasonable worst case conditions:


- 1. a total color contrast (ΔE) value of 2.0
- 2. a green (0.55 um) contrast value of 0.05

If the results of the Level-1 screening are below the screening criteria for a Class 1 area, no additional analysis is required. If the results exceed the screening criteria for a Class 1 area, a Level-2 screening is required.

Example Distances to Class I Areas

3.2 Level-2 Screening & Level-3 Analysis

If the results of the Level-1 screening exceed the screening criteria for a Class 1 area, a Level-2 screening must be done using more representative inputs. For example, meteorological data and topography representative of the surrounding area are used in a Level-2 screening. The procedure for the Level-2 screening is described on page 39 of the EPA Workbook.

If the results of the Level-2 screening exceed the screening criteria for a Class 1 area, a Level-3 analysis is done. A Level-3 analysis in not considered a screening and is intended to be a comprehensive analysis of the magnitude and frequency of occurrence of plume visual impacts as observed at a Class I area. A Level-3 analysis is described on page 51 of the EPA Workbook.

All assumptions and non-default inputs must be clearly documented and may require the approval of the Federal Land Managers in addition to the District.

4.0 References

- Santa Barbara County Air Pollution Control District Rule 803. http://www.sbcapcd.org/rules/download/rule803.pdf
- EPA's A Screening Procedure for the Impacts of Air Pollution Sources on Plants, Soils, and Animals (EPA 450/2-81-078)
- <u>http://www.ourair.org/wp-content/uploads/EPA-Soil-Plant-Screen.pdf</u> United States Environmental Protection Agency (EPA) Workbook for Plume Visual Impact Screening and Analysis (Revised October 1992) <u>http://www.epa.gov/ttn/scram/userg/screen/WB4PlumeVisualOCR.pdf</u>
- EPA's User's Guide for the AMS/EPA Regulatory Model -AERMOD http://www.epa.gov/scram001
- EPA's AERSCREEN User's Guide http://www3.epa.gov/ttn/scram/models/screen/aerscreen_userguide.pdf